Predicting properties of faults in sand-shale sequences: case studies from the Rotliegend, Dutch Southern North Sea area

A. Silvius1, 3, K. van Oijik1, Y. Kremer2 & Z. Shipton2
1. exploration@ebn.nl, EBN, Daadsesingel 1, 3511 SV Utrecht, Netherlands
2. Department of Civil and Environmental Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G11XJ, United Kingdom
3. Department of Earth Sciences, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, Netherlands

Introduction

Understanding fault sealing and permeability is key for evaluating reservoir compartmentalization, structural trap integrity and hydrocarbon migration pathways.

Existing fault seal evaluation tools (e.g., SGR, SSF, CSP) are reliable in conditional circumstances and do not usually quantify their inherent level of uncertainty. Current algorithms, particularly those focusing on clay smearing, depend largely on published calibrations to e.g., shallow marine sand-shale sequences from the Brent Province [5] or laboratory measurements [6]. Properties and conditions of Permian and Triassic mixed fluvial/Aeolian rocks are not necessarily honored by these existing fault seal algorithms. A collaborative Msc. project evaluates fault sealing properties in Rotliegend fields based on fault fabric and architecture.

Definition of fault sealing

Fault sealing occurs where fault-zone processes have resulted in a fault-zone with a high threshold capillary entry pressure. This process is defined at an area where reservoir-against-reservoir juxtaposition takes place.

Hydrocarbon leakage through a water-wet fault-zone occurs when the excess (buoyancy) pressure generated by the hydrocarbon column exceeds the capillary threshold pressure of the fault-zone material.

Catalogue - Rotliegend fields

Sealing faults in relation to general (paleo)geography

Notional empirical relations

Fault permeability in Q(ambient) vs. Clay content in %

Methodology

The project is carried out by firstly building a catalogue of show-case proven examples illustrating various aspects of fault sealing (see image), including, but not limited to, faults acting as a barrier or baffle to pressure communication and/or hydrocarbon flow over the geological and/or production timescale, fault collapse and juxtaposition sealing.

A better understanding of fault sealing and fault permeability may be achieved by reviewing show-case examples from the Permian a/o Triassic in detail. The collection of key parameters such as burial depth, host rock clay content, sand and shale bed thickness, fault geometry etc., will allow comparison of fault rock type and associated sealing potential between the outcrop based fault characterization and more commonly used predictors such as SGR.

Process-based fault characterization Flowchart

Flowchart for process-based characterization of fault sealing and fault permeability, based on outcrop studies:
1) Identify shale content and determine the type of fault deformation.
2) Assess the degree of cementation (burial and post-faulting temperature).
3) Progressive deformation.

References see abstract