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Abstract 

The E&P industry is frequently characterized by disappointing project outcomes. Specifically, the industry fails 

to deliver what is promised in term of hydrocarbon volumes due to overly optimistic predictions (NPD 

Resource Report, 2018). Although this prediction bias problem is well-known amongst specialists involved, 

literature is scarce. Two suggested causes of the prediction bias are evaluation tool bias (e.g. imprecise seismic 

interpretation) and cognitive bias (e.g. individual motivational bias). In addition, Hoetz (2016) proposed the 

idea of a Selection Bias (SB) in the E&P industry. SB is based on the idea that more attractive prospects are 

assumed to be more matured; when these overly optimistic projects are drilled, they therefore result in 

disappointing volume delivery. In the Netherlands, the state-owned company EBN participates in virtually all 

E&P projects and has been reporting disappointing volumes for years (EBN Focus, 2019). This study aims to 

address this problem by identifying and quantifying key parameters that contribute to the volume prediction 

bias.  

First, using EBN data of the Dutch subsurface, a statistical look-back analysis is performed to check the quality 

of subsurface parameters used for volumetric assessments. Past volumetric performance is evaluated for both 

exploration and development wells in the time frame of 2004-2019 (215 cases). This is then broken down in 

relevant subsurface parameters. Using statistical tools, the prediction bias for recoverable volume, top 

reservoir depth, GWC, PHIE, Sw, GRV, NRV, N/G and pressure is quantified. Significant prognosis errors on 

single well scale are observed as well as a significant bias on portfolio scale. Prediction errors often indicate 

over-optimism. GRV and Sw are found to be major contributors to the observed volumetric bias.  

Secondly, the effects of prediction bias are modelled on portfolio scale using synthetic portfolio modelling. A 

stochastically generated synthetic drilling portfolio is designed. Prospects are ranked based on attractiveness 

and drilled on paper. As the industry works with incomplete/noisy data the perception of a prospect often 

differs from reality. Hence for each prospect a prognosis is synthesized using Monte Carlo simulation. When 

the synthetic portfolio is drilled on paper the prediction quality is assessed by comparing the generated 

prognosis and its actual. Findings are that prediction bias can be modelled on portfolio scale based on the 

concept of SB. A volume bias is unavoidable due to SB as the ranking process prefers large prospects (being 

truly large or perceived as large). Matured portfolios in which prospects sizes are more clustered, might lead 

to increased SB. SB is a function of evaluation uncertainty though, so rigorous technical work might reduce SB.   

The main outcome of this study is that the look-back analysis of the EBN portfolio shows a volume bias of 42%. 

This can partly be explained by SB, but other factors contribute. The findings of this study can help prioritize 

which parameters need more careful attention in reviewing project proposals. Furthermore, including the 

effect of EB in resource prediction tools might help to improve prognosis quality.  
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1. Introduction 

 

1.1 Problem statement 

A solid understanding of the subsurface is of critical importance for successfully drilling wells. This applies 

especially to the oil and gas industry, where projects are of high complexity and large budgets are at stake. 

Projects in the Exploration and Production (E&P) industry are however frequently characterized by large 

degrees of uncertainty. This is related to incomplete data from the subsurface and challenging decision making 

which is based on a combination of hard data, soft data and interpretations. This uncertainty often results in 

project outcomes falling short of pre-drilling promises in term of resource volumes. Many studies show 

systematic underperformance of the E&P industry (e.g. Milkov, 2017; Rudolph & Goulding, 2017; NPD 

Resource Report, 2018). Specifically, they report a failure of the industry to deliver promised volumes and 

value. This underperformance is proven to be directly related to overly optimistic evaluations of prospects. 

The prediction bias is a problem that is well known amongst specialists involved.  Despite this awareness and 

despite remarkable technological advances in computing software and seismic technology, there are few signs 

of improvement over the last 30+ years (NPD Resource Report, 2018). 

For the Netherlands, the Dutch state-owned energy company EBN has been reporting disappointing volume 

outcomes for years (EBN Focus, 2019). EBN participates as a non-operating partner in essentially all E&P 

projects in the Netherlands. With its extensive knowledge about drilling operations in the Netherlands, EBN is 

in a good position to assess the industries performance. Their 2019 annual report shows that over the past 

decade expected annual total volumes are consistently higher than the actual realized ones. Overall, for the 

period of 2008 until 2018 total found hydrocarbon volumes from exploration account to only 51% of the 

expected volumes (EBN Focus, 2019). Internationally, a similar trend is observed. The recoverable resource 

volumes are reported to be generally 2-4 times less than predicted (Quirk et al., 2018; and references therein). 

Although the overprediction problem is well-known amongst specialists involved, no clear consensus on the 

cause exists. Surprisingly little work compiling exploration and production performance has been published 

and studies assessing possible explanations for the prediction bias in volumes are scarce. This is not surprising 

for the oil and gas industry is a highly competitive market with not only substantial amounts of money at stake, 

but also a strong reputational aspect. Most projects within the industry are therefore confidential and most 

companies are reluctant to share data, thereby limiting the possibility to perform reliable assessments of the 

industries performance. 

Recently, at the 2018 annual European Association of Geoscientists & Engineers (EAGE) convention, 65 people 

met for a workshop to discuss the prediction bias. Suggested causes for the disappointing results are, amongst 

other things, problems with inputs to probabilistic models, general over-optimism, unrealistic Net/Gross-

estimates and uncertainties in trap geometry and other rap-related issues (Quirk et al., 2018). Another 

possible mechanism is the phenomenon of Selection Bias (SB) as formulated by Hoetz (2016). Here is stated 

that as targets are selected with great care, they are also subject to large uncertainty. As the selection process 

favours large structures (or large resource volumes) those models that show large structures do have a greater 

likelihood of being matured as project. This evolves in a tendency of realizing (or drilling) overly optimistic 

projects which, statistically, result in disappointing project outcomes. Alternatively, if the selection criteria are 

ignored and drilling the exploration portfolio would take place randomly, no bias would show up.   
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In the current time of climate change and the energy transition that follows from it, where society has 

increasingly less confidence in the oil and gas industry, and with the prevailing unstable geopolitical 

environment, it is critical for the oil and gas industry to be able to deliver what is promised. Moreover, a lot of 

money is at stake and unfounded policy making based on biased data needs to be avoided. Furthermore, 

certain new energy systems, e.g. Geothermal and CCS, do also rely on subsurface estimates, and thus a 

prediction bias could be present also for these systems. Hence a better understanding of the factors that 

impact prediction uncertainty and prediction bias are relevant beyond the classic petroleum industry. 

 

1.2 Objectives and research questions 

The following research questions aim to address the above-mentioned problem: 

What are the key parameters that contribute to the observed prediction bias in volumes? 

¶ What is the quality of the prediction of the subsurface parameters being used for volumetric 

assessments? (E&P drilling projects) 

¶ Can prediction bias effects on portfolio scale be modelled?  

 

1.3 Research approach 

To answer the research questions, the research is comprised of two components: (1) a statistical look-back 

analysis to quantify and decompose prediction bias, and (2) modelling the effect of prediction bias on portfolio 

scale.  The statistical look-back analysis is based on EBN data and is focused on hydrocarbon reservoir volumes 

and underlying parameters that are used in making volume predictions. As EBN is a Dutch state-owned 

company only data concerning the Dutch subsurface are available and are used. The first step of this analysis 

is the design of a database for the pre-drill vs post-drill hydrocarbon volume estimates. Next, to decompose 

the prediction bias in volumes, similar databases are designed for parameters used in volumetric estimates. 

For one of these parameters, namely top reservoir depth, a database already exists. This database, set up by 

Hoetz (2016), is expanded. If the statistics do allow, further breakdowns are carried out e.g. prediction 

accuracy per operator.  

When the bias is adequately decomposed using statistical analysis, the effect of prediction bias is modelled on 

portfolio scale. A stochastically generated synthetic drilling portfolio is designed. After specifying the portfolio 

ranking criteria, the synthetic portfolio is drilled on paper. By comparing the portfolio prognosed values and 

the actuals, the prediction quality is assessed. Based on this, key parameters contributing to prediction bias 

can be identified.  

 

1.4 Thesis outline 

In this thesis first a literature study is presented to better understand the volume prediction bias as presented 

in literature and to summarize some of the suggested causes. As the research consists of two main 

components, the statistical look-back analysis and the synthetic portfolio modelling, this thesis is set up in a 

similar manner. First the statistical look-back analysis is presented with its own methods, results and 

discussion sections. Next the synthetic portfolio modelling is introduced in a comparable structure. In the end 

of this thesis, the conclusions section will summarize findings from both research components. The thesis is 

finalized by giving recommendations for future studies.  
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2. Background 

To put the results of this study in perspective, a comprehensive overview of the prediction bias and its 

suggested causes as presented in relevant literature is necessary. In this chapter, first an overview of previous 

pre-drill vs post-drill assessments are presented. Then, some suggested causes that might contribute to the 

observed prediction bias are summarized.  

 

2.1 Volumetric prediction bias in literature 

A comparison should be made with other datasets, to later on put the results of the statistical look-back 

analysis in perspective. Preferentially one of the North Sea to keep the comparison as solid as possible, with 

similar lithostratigraphy and geological history of the basin, and of roughly same time frame to consider 

technical advances that are made over time. This is where it becomes visible that little data on this topic is 

publicly available. Although not extensively searched for, no studies based on data outside the North Sea could 

be found. For the North Sea the most extensive studies are produced by the Norwegian Petroleum Directorate 

(NPD). This is the Norwegian government agency responsible for the regulation of the Norwegian petroleum 

resources on the Norwegian Continental Shelf (NCS). Their 2018 annual report shows a study on all 

hydrocarbon targets drilled on the NCS in the period 2007 ς 2016 (fig. 1). Concerning gas targets, roughly 47 

percent of finds are within, 16 percent above and 37 percent below the uncertainty range of predicted 

estimates. The companies, according to this study, overestimate resource expectations by an average factor 

of 2.1 (NPD, 2018).  

 

Figure 1.: Company pre-drilling estimates for gas, compared with post-drilling discovery size. Figure is taken from the 
NDP Resource Report 2018. The red area shows the P10-P90 range. The squares are the expected discovery size pre-

drilling, while the triangles represent the estimated discovery size post-drilling. (NPD, 2018) 

No comparable study for the British part of the North Sea has been found in the public domain. The only study 

that is of some interest is an extensive post well-analysis of the Oil and Gas Authority (OGA) on wells in the 

Moray Firth area. The focus of this study is whether projects were successful and if not, what the reason for 
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failure is (OGA, 2015; Mathieu, 2016). Two other relevant datasets that address the quality of prognosis are 

Milkov (2017) and Rudolph & Goulding (2017).  

Milkov (2017) presents the results of a dataset comprising of 25 exploration wells drilled by Lundin Petroleum 

on the NCS during the period 2011 ς 2015. Milkov shows that Lundin explorers consistently underestimate the 

geological Probability of Success (PoS) and signifƛŎŀƴǘƭȅ ƻǾŜǊŜǎǘƛƳŀǘŜ ǘƘŜ ǎǳŎŎŜǎǎ ŎŀǎŜ ǾƻƭǳƳŜǎΦ [ǳƴŘƛƴΩǎ 

average discovery is approximately 4 times smaller than the average estimated prospect. On portfolio scale 

just over half of what was promised (Expectation Volumes) was actually found. Milkov makes a strong case 

about neglect of base rate information related to exploration success and discovery sizes by explorers in their 

exploration areas. Base rate information meaning historical data on which constraints for new predictions can 

be based. In principle this aspect of systematic overpromise could be forestalled by EBN for the Dutch 

situation. As EBN has access to all data and as an investor evaluates all new made predictions, EBN should be 

able to estimate prognosis corrections if base rate information indicates to.  

Rudolph and Goulding (2017) ǇǊŜǎŜƴǘ ǘƘŜ ǊŜǎǳƭǘ ƻŦ ŀƴ ŀƴŀƭȅǎƛǎ ƻŦ 9ȄȄƻƴ aƻōƛƭΩǎ ŎƻƴǾŜƴǘƛƻƴŀƭ ǿƛƭŘŎŀǘ 

predictions versus results in 44 countries from 1994 to 2015. Interestingly, Rudolph and Goulding on first sight 

appear to be the only ones (based on the literature used for this study) reporting an underprediction instead 

of overprediction of volumes. They report that the sum of the pre-drill volume is 27% lower than the post-drill 

volume. Though closer examination shows that this concerns risked pre-drill volumes. When un-risked pre-

drill mean volumes for the successful wells are analysed, the pre-drill volumes are actually 4% greater than 

the actual post-drill sum. Although still a relatively small bias, this look-back study also shows an 

overprediction of pre-drill volumes on portfolio scale. Furthermore Brown et al. (2000) report that in the 

period 1987 ς 1996, Exxon Mobil discovered worldwide only half the total predicted volume of hydrocarbons. 

Many older studies also confirm that explorers are commonly overoptimistic in their predictions of 

hydrocarbon volumes (e.g. Rose 1987; Johns et al., 1998; Harper, 2000). As these studies are based on data 

significantly older than presented in this study, no further attention will be given to these analyses. They do 

show that apparently publicly available look-back studies might use to be more common and that probably 

the industry appears to have become less willing to give insight in this type of business performance data. 

Without a doubt further insight would present itself if larger statistical look-back studies would be available. 

For example, in 2000 a book was published by Ofstad et al. combining the papers presented at the Norwegian 

Petroleum Society conference Improving the Exploration Process by Learning from the Past held in Haugesund 

in September 1998 (Ofstad et al., 2000). This book touches various aspects of the exploration process with the 

aim of further developing and improving the process for the future.  

Summarizing, few recent studies are available assessing the prediction bias in hydrocarbon volumes, let alone 

on the underlying parameters. Yet the problem is well known amongst insiders. Although no clear consensus 

exists on the cause of the bias, some possible contributors are suggested. In the next section, in 

correspondence with Hoetz et al. (2020, in review), these proposed ideas are divided in the following 

categories: evaluation tool induced bias and cognitive bias. 

 

2.2 Evaluation tool induced bias 

Lƴ ŜȄǇƭƻǊŀǘƛƻƴΣ ŀǎ ǿƛǘƘ ŀƭƭ ƎŜƻƭƻƎƛŎŀƭ ǎǳōǎǳǊŦŀŎŜ ǿƻǊƪΣ ǘƘŜ άǊŜŀƭέ ƎŜƻƭƻƎƛŎŀƭ ǎƛǘǳŀǘƛƻƴ ƛǎ ƻŦǘŜƴ ǳƴƪƴƻǿƴΦ aƻŘŜƭǎ 

are built to reproduce reality as accurate as possible. These models are mainly based on seismic data and 

surrounding wells. They represent an interpretation based on seismic interpretation and assumptions of what 

is likely to occur between datapoints (Lelliot et al., 2009). Often soft and hard data are not enough to define 

the distribution of parameters in the reservoir model. Hence stochastic algorithms are used to provide a 

measure of uncertainty based on petrophysical parameters and lithofacies. As the uncertainties of each input 



12 
 

data used to build the static reservoir model, cannot be expressed in a deterministic realization, a probabilistic 

model is often the outcome (Rose, 2006; Binns & Corbett, 2012). 

As mentioned, the static probabilistic reservoir models, on which the prediction of volumes is based, depend 

significantly on interpretation of seismic and wells. Whereas estimates for e.g. porosity (PHIE), are often 

straightforward and based on well data, parameters such as Gross Rock Volume (GRV) and column height are 

more complex and very specific for each individual prospect. These parameters depend largely on seismic 

interpretation and can have large uncertainties. Seismic imaging is an imprecise tool even if imaging appears 

good. An interesting example is given by Quirk and Ruthrauff (2008): because of the relatively low vertical 

resolution in seismic (usually>25m) we often assume that the base of the overlaying seal does equal the top 

of the reservoir. However, this is not always the case and some waste zone is present. This approach tends to 

result in overestimating volumes.   

Another issue with founding volume predictions on these probabilistic models is the choice of distributions. 

Quirk and Ruthrauff show in their 2006 paper that three different volumes can be predicted using identical 

P90 and P10 values in GRV, Net/Gross (N/G) and hydrocarbon column height. Just by doing nothing other than 

changing from lognormal to stretched beta distributions. Certainly, this affects prediction accuracy. A lot of 

other issues with the method of predicting hydrocarbon volumes are also presented. Such as that static 

models do not take into account the three-dimensional aspect of reservoir properties (Quirk & Ruthrauff, 

2008; Binns & Corbett, 2012). Another example of bias being introduced by the evaluation method is known 

from seismic time-depth conversion (Hoetz, 2016). In case the velocity model is too simplistic an important 

effect might be overlooked: rock velocities tend to increase with increasing depth. A more elaborate velocity 

parametrization is required to take this into account. Figure 2 illustrates how ignoring this effect can result in 

systematic overpredicting volumes. So, the conclusion is that prediction errors and prediction bias can be 

introduced simply by the methodology or evaluation tool by which volumes are prognosed.  

 

Figure 2.: Example of evaluation tool induced bias resulting in over-optimistic volume predictions from Hoetz (personal 
correspondence). Early seismic data was often not properly depth converted, e.g. because the velocity model used was 
too simplistic and ignored the effect of burial compaction. In this example a development well (W2) was planned on a 
gas bearing anticline that was discovered earlier by W1: drilled at the crest of the structure. Mapping and time-depth 

conversion of the entire accumulation used a constant velocity calibrated at W1 (fig. left). Subsequently W2 was drilled 
and found the flank deeper than prognosed. Advances in velocity model building (introducing more sophisticated V0-K 

velocity functions that honor the effects of burial compaction) shows that the anticline is narrower than mapped initially 
(fig. right). 

In this category we are however limited by the technology being deployed. We can pursue that the tools that 

we have at our disposal, are used correctly. We should avoid treating the tools as black boxes and recognize 
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potential errors as soon as possible. To do so, we should be aware of improper use of evaluation tools. An 

example would be to create awareness of proper time-depth conversion methodology.    

 

2.3 Cognitive bias 

Given the degree of subjectivity of volume predictions, the influence of cognitive bias is an important 

consideration. The general definition of a cognitive bias is a predictable and repeatable, unconscious mental 

error in the processing of information, which can result in illogical judgement and decisions (Baddeley et al., 

2004). Causes of bias, specifically on decision making, have been described in general by Kahneman in this 

best-selling book Thinking, Fast and Slow (2011). Cognitive biases in particular in Earth Sciences are addressed 

by Baddeley et al. (2004). As the sources and implications of cognitive bias in the exploration process are very 

widespread (Baecher, 1988; Baddeley et al., 2004; Binns & Corbett, 2012), it would be beyond the scope of 

this thesis to try and list them all. Instead attention will be focused on three forms of cognitive bias that are 

perceived to have the largest impact on prediction quality. Namely overconfidence, individual motivational 

bias and base rate neglect (Baddeley et al., 2004; Binns & Corbett, 2012; Milkov, 2017).  

2.3.1. Overconfidence 

Overconfidence is a well-ŜǎǘŀōƭƛǎƘŜŘ ōƛŀǎ ƛƴ ǿƘƛŎƘ ƻƴŜΩǎ ǎǳōƧŜŎǘƛǾŜ ŎƻƴŦƛŘŜƴŎŜ ƛƴ ŀ ƧǳŘƎŜƳŜƴǘ ƛǎ ƎǊŜŀǘŜǊ ǘƘŀƴ 

the objective accuracy of the judgement. Kahneman (2011) describes a distinction between a swift, intuitive 

response to a situation and a more thoughtful, analytical approach. This is argued by Binns and Corbett (2012) 

to be particularly applicable to the E&P industry. Rapid, intuitive response to a project proposal based on 

experience instead of a more slow but considerate response will surely affect prediction performance. 

According to Myers (2018) the potential effects of overconfidence can easily be counteracted by the 

appropriate use of historical data.  

2.3.2. Individual motivational bias 

In a sense exploration geoscientist have conflicting roles when generating and reviewing prospects. On one 

hand, they must accurately evaluate available information and make a prediction as close to reality as possible. 

Alternatively, they are expected to be creative in generating opportunities and be persuasive in maturing 

them. This might influence the quality of the predictions. In general terms it is hard to judge which motivational 

factors might affect prediction quality. Does, for example, the possibility of not getting a prospect drilled 

impact the assessment of prospect size (Bond and Carragher, 2018)? Motivational bias can be under 

unconscious control but might be conscious too. (Baddeley et al., 2004). 

2.3.3. Base rate neglect 

Historical base rate information can help set constraints on future predictions. However, people tend to rather 

focus on specific information at the expense of historic base rate information (Kahneman and Tversky, 1973; 

Baddeley et al., 2004). This shortcoming in sufficiently weighting a-priory information in reasoning is known 

as base rate neglect. An example is demonstrated by Milkov (2017): Milkov shows that, based on a dataset of 

25 exploration wells from Lundin Petroleum, Lundin explorers disregard information about recent discoveries 

and instead base volume assessments on individual prospect information. This ultimately contributes to a 

volume bias. 

In the examples of cognitive bias above, the role of the explorationist is described as one of an individual. 

However, in reality the exploration process is based on group work and how experts collaborate and confer in 

teams. This generates other, more complex forms of bias associated with group interactions (Baddeley et al., 

2004). Also, the mix of biases and to what extend they influence the prediction process varies per company 

and per individual. Quirk and Ruthrauff (2008) state for example: άhǳǊ ŜȄǇŜǊƛŜƴŎŜ ƛǎ ǘƘŀǘ ǾƻƭǳƳŜǘǊƛŎ 
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assessments of the same pre-dill prospect made by different interpreters and by different companies commonly 

ǾŀǊȅ ōȅ ƳƻǊŜ ǘƘŀƴ ŀ ŦŀŎǘƻǊ ƻŦ ǘǿƻΦέ Quantifying the effect of cognitive bias on prediction performance might 

therefore be a tough, if not impossible, task. We are not aware of studies assessing the amount of cognitive 

biases being present in predictions from geoscientists. It might be an area of fruitful and useful future research. 

Until then the effect of cognitive bias should be restrained as much as possible by consistency in the prediction 

process. For example, via the use of historical data (Myers, 2018) or workflows (Milkov, 2015). After all, 

subjective judgements are not necessarily problematic as long as they are derived in a consistent manner and 

can thus be accounted for (Cox, 1946). Another useful advice for mitigating cognitive bias is introducing 

thorough technical project challenge (e.g. peer reviews) by others who have different motivations. 
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3. Statistical look-back analysis 

To quantify the volume bias and to pinpoint key parameters that contribute to it, a statistical look-back study 

based on historic data is performed. In this study the quality of the prediction of the subsurface parameters 

being used in volumetric assessments is analysed. This chapter first describes the method of the statistical 

analysis. Subsequently the results of this research are presented and discussed.  

 

3.1 Methodology 

The statistical look-back analysis is based on EBN data. As stated in the introduction, EBN participates as a 

non-operating partner in virtually all E&P projects in the Netherlands and therefore has access to all data 

regarding the projects. The pre-drill prognosed values of reservoir characteristics are generally supplied by the 

operator as part of the proposal for the project. Once executed, the post-drill measurements (actuals) are also 

provided. Of the various parameters, the reservoir depth prognosis can easily be checked from the well logs. 

PHIE, water saturation (Sw), GWC and N/G require some additional petrophysical analysis but can also be fairly 

well constrained after inspection of the well log. Gas Initially In Place (GIIP) and Recoverable Volumes (RV) are 

estimates based on well tests and/or updated static models. Analysing prediction quality of specific reservoir 

parameters allows to investigate which static model input parameters are dominating the observed prediction 

bias in gas volumes. All the supplied data is stored by EBN in their proprietary well database Basis Registratie 

Boringen (BRB). To ensure full auditability, all compiled datasets used in the study are based on data from the 

BRB. Parameters assessed in this study are RV (recoverable volume), GIIP, top reservoir depth, GWC, PHIE, Sw, 

Net rock volume (NRV), GRV, N/G and pressure. Note that all these parameters are separate entries (data 

fields) in the BRB. For example, N/G data used in this study is not derived from NRV and GRV data from the 

database. Rather N/G data is stored separately in the BRB and values are directly taken from the BRB. Results 

presented in this chapter are based on a download of the BRB from 06-02-2020.  

As data being used in evaluations is typically incomplete and imperfect, it is likely that a prediction is estimated 

higher or lower compared to the άǘǊǳǘƘέΦ Hence there is little point in assessing individual predictions on their 

quality. On portfolio scale though, the cumulative predictions should approach the measured actual. A 

statistical approach looking at a significantly large set of wells is therefore taken to assess prediction quality 

and the overall portfolio performance. The focus of this study lays therefore on acquiring results with as much 

statistical relevance as possible via large sample sizes. Most results that are shown in this report are therefore 

based on a dataset compiled of both exploration and development wells. Furthermore, datapoints are only   

from drilling projects with a hydrocarbon objective from the period 2004 until 2019. Datapoints from before 

2004 are excluded due to incompleteness. Also, technical failures are removed from the compiled datasets 

whilst dry holes (regular outcomes of exploration wells) are kept in as data entries. The reason for that is as 

follows: in the case of a technical failure the prognosis could, due to circumstances not be checked with a 

reliable actual measurement. Hence this datapoint is considered inconclusive. In the case of dry holes on the 

other hand, both prognosis and actual are available and hence constitute valid datapoints.  

Where required, further details regarding the various datasets are given in the results section where they are 

presented. When sample size (aka the number of samples in a data set) does allow, further in-depth analyses 

are performed. For example, top reservoir depth has a large sample (>300), so further detailed analysis such 

as bias per operator are possible. However, these detailed analyses are not documented in this thesis for 

confidentiality reasons. As all operators deliver data in a different manner and with a different format, some 

wells/data entries in the EBN database have more information than others. This reflects in various sample 
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sizes of the different datasets used for the statistical analysis. The fact of the matter is that within the EBN 

database some entries have complete pre-drill and post-drill data on volumes and all underlying parameters, 

while others only have incomplete data (e.g. no prognosed porosity).  

Data entries in the various datasets are checked by using the source documents e.g. well proposals or post-

drilling well summaries. In particular outliers, i.e. very large prognosis errors, have been quality controlled. 

Also, some random checks, around 10% of the dataset, were conducted to get a feel for the accuracy of the 

EBN databases.  These source documents can be found in the EBN online archive as well as the online NLOG 

database. NLOG is a database managed by the Geological Survey of the Netherlands and contains all 

subsurface data that is made publicly available under Dutch mining legislation. Where relevant, data outliers 

and data discrepancies were reported and the EBN database, and the dataset used in this research, was 

updated.  

!ƭƭ ŘŀǘŀǎŜǘǎ ŀǊŜ ŎƻƳǇƛƭŜŘ ƛƴ aƛŎǊƻǎƻŦǘ 9ȄŎŜƭϯ ŀƴŘ ŀƴŀƭȅǎŜŘ ǳǎƛƴƎ 9ȄŎŜƭΩǎ ōǳƛƭǘ-in tools for statistical analysis. 

For each parameter the error is calculated by subtracting the actual from the prognosis for each well. The 

mean of the prediction errors is a measure for the prediction bias for that particular parameter. To quantify 

the spread of prediction errors the standard deviation (STD) is determined. A relative bias (bias %) is calculated 

by dividing the bias by the mean of the actual. In addition, as the used datasets only represent a subset of the 

total population (as stated: the EBN database is not complete) a confidence interval (CI.) is calculated. In this 

way it is possible to determine whether an observed bias is statistically significant. Example: from the period 

being reviewed (2004 ς 2019), 643 data entries (wells) are present in the EBN database and these represent 

virtually all hydrocarbon wells drilled in the Netherlands for that period. Of these, only 328 have complete 

pre-drill and post-drill top reservoir depth data. As the sample of data is thus just over half of the entire 

population present, a CI. is necessary to estimate within which range bias parameters are for the full 

population. Several statistical tools were tested for estimating CI values: Tibco Spotfire®, R® and Excel.   the 

latter was found to be most practical and hence used in the further analyses. These duplicate test analyses are 

not included in this report.    

To further substantiate the statistical analysis, paired t-tests are performed on the datasets after Heggland et 

al. (2000). Heggland et al. have conducted a similar study in which they compared post-drill hydrocarbon 

volumes and volumetric parameters with their respective pre-drill predictions. This research was based on 

data from the NCS. A t-test is a statistical tool used to determine if there is a significant difference between 

the means of two datasets. As there is always the factor of statistical random noise, small differences between 

prognosed values and their actual measurements can occur without a bias in the ability to prognose. The t-

test basically accounts for this statistical noise and checks whether any potential differences between a 

prognosis and actual can be attributed solely to the noise, or that other factors are involved. As prognosis and 

actual are inherently related, a paired t-test is used. This type of correlated t-test applies to datasets of 

matched pairs of similar units. As the actual measurement can come in either higher or lower than prognosis, 

a so called two tailed paired t-test is performed on all datasets. The null hypothesis for the tests is that there 

would be no difference between the prognosis and the actuals other than random noise. This is following 

Heggland et al. and is also the custom null hypothesis used in statistical studies. Furthermore, the t-tests were 

executed with a significance level (alpha) of 0.05. Meaning that a risk of 5% was taken in concluding that a 

difference exists when there is no actual difference between the two populations. A 5% chance of incorrectly 

rejecting the null hypothesis was thus deemed acceptable. The significance level of 0.05 was chosen as this is 

standard in statistics.  

The t-test produces two results that are of interest to determine whether to reject the null hypothesis or not: 

the p-value and the t-statistic. The p-value is the probability of obtaining an effect (in this case a prognosis 

error) at least as extreme as in the sample data, assuming the null hypothesis is correct. When a p-value is 

thus less than or equal to the significance level, in this case 0.05, you can reject the null hypothesis. In most 
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cases though, the p-value will be orders of magnitude smaller than the alpha value when a bias is present. In 

addition to this test of the null hypothesis, the t-test produces a t-statistic. The t-statistic is a ratio of the 

differences between two datasets. The larger the t-statistic, the more difference there is between datasets 

and vice versa. For example, a t-statistic of 3 means that the datasets are three times as different from each 

other. The t-statistic can be compared with the t-critical value, the value that a t-score must exceed for the 

null hypothesis to be rejected. As a two-tailed t-test is taken, the absolute value of the t-statistic is taken. 

Lastly, the EBN database that is used contains more information than just pre-drill and post-drill parameters. 

Specifically, the post-drill values are the first, often pre-liminary, measurements after the well has been drilled. 

Often these values are updated over the project duration as more measurements are done over time. We can 

reasonably assume that new measurements are a closer approximation to reality. To indicate how close the 

first measurements used in this study are to further updates and thus how stable the calculated bias is with 

respect to later updates of the actuals. Hence an additional analysis is performed assessing the frequency and 

magnitude of volumetric updates. Before, during and after the drilling project there is regular communication 

between the operator and EBN. In spring and fall Technical Committee Meetings (TCM) and Operating 

Committee Meetings (OCM) are organized. In these meetings the activities of the past year are discussed and 

evaluated by the operators. EBN is informed about any updated measurements and these updates are then 

stored in the national hydrocarbon resource database IPResource (IPRes). This database has the purpose of 

monitoring and prognosing production rates and volumes. To assess the frequency and magnitude of 

volumetric updates, information from this database is used to calculate the percentual change of volumes per 

year. Projects with complete GIIP data over the timespan 2009 ς 2018 are selected. Updates where the 

volumes were adjusted with more than 100% percent are regarded outliers, for example due to erroneous 

measurements, and are not taken into account. 

 

3.2 Results 

3.2.1. Volumes 

Figure 3 shows the pre-drill Recoverable Volume (RV) and its actual for each project in the compiled RV 

dataset. Recoverable Volume (RV) = Expectation Volume (EXP = Means Success Volume * Probability of 

Success) * Recovery Factor (RF). Only wells targeting gas have been selected to avoid unnecessary and 

complicated volume conversions. Also, the major part of the Dutch E&P projects target gas, whilst only 13 

wells in the dataset targeted oil. Of the 215 gas wells, 96 wells have a RV result below the low-case estimate. 

This category includes 54 dry holes. Another 53 wells have an actual RV between the mid-case and the low 

case. 34 wells delivered on prognosis. (note that often no new RV values are being calculated when 

measurement do not differ much from prognosis). 32 wells delivered better than the base case. This means 

69% of the wells in this dataset fell short of delivering the mid-case expectation volume. For this dataset only 

58% of the prognosed (risked) volumes are found. This implies a 42% volume prediction bias.   
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Figure 3.: RV prediction vs actual diagram. For each drilling project a mid-case recoverable volume estimate is plotted 
(blue rhombus) with a low-case to high-case uncertainty range (grey bar). The spheres represent the actual volume 

measurement after drilling. Dry holes are plotted at the 0.0 RV axis. Projects are sorted on mid-case estimate size. Note 
the logarithmic scale. 

3.2.2 Depth prognosis 

Top reservoir depth is an important factor in determining the hydrocarbon column height, the position of 

possible spill points and the GRV.  Often, in case the actual reservoir depth as encountered in the well, turns 

out deeper than prognosed, the volumes have to be adjusted downwards.  Figure 4 presents the top reservoir 

depth prognosis errors. 321 Wells within the timeframe of this study are found in the EBN database that 

contain the pre-drill prognosed top reservoir depth and the post-drill measured actual. For this analysis and 

all the following ones, both gas target wells and oil target wells are considered, in contrast to the volume 

dataset. This was done to strive for as much statistical relevance as possible. The depth errors of these wells 

are plotted with the differentiation per well type: exploration, appraisal and production. The maximum 

underestimation is -343 meters and the maximum overprediction 225 meters. Based on visual inspection of 

the graph it would appear that the largest errors are generally referring to exploration wells. Overall 61% of 

the wells show depth error resulting in an overestimated volume. This bias towards over-optimism is also 

represented in the fact that the chart is lob sided to the left.  

The argument can easily be made that it is unrealistic to expect from geoscientists that they predict top 

reservoir depth (and GWC for that matter) exactly on point. Depth prognoses are based on seismic and well 

data containing noise plus assumptions. Unfortunately, no information regarding predrill depth prediction 

uncertainty is available in the EBN database. Nevertheless, an attempt has been made to put these depth 

errors into context. A rough rule of thumb says that estimating depth with a depth accuracy of up to 1% 

percent is typical and reasonable (Hoetz, personal correspondence). In figure 5 the depth errors can be 

referenced with respect to 1% of the target depth. Also, this figure represents a subset of the depth error 

dataset. Here only exploration wells have been selected. Often for well reviews different well types are kept 

separate in order to reduce the risk of comparing apples and oranges. In this graph significant prognosis errors 
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can be observed outside the 1% uncertainty range. Furthermore, the graph is also left skewed, implying bias 

to overestimating volumes in exploration wells. 

 

Figure 4.: Top reservoir depth prognosis error (m) plot. Prognosis errors are ranked from deep to prognosis to shallow to 
prognosis with a distinction per well type. The displayed error is with regard to the mid-case prognosis. The difference in 
percentage between over- and underestimates indicates the presence of bias in the prognoses. The bias (-8 m) is larger 

than the CI (+/- 5m) indicating that the bias is statistically significant. 

 

Figure 5.:  Top reservoir depth prognosis error (m) plot of only exploration wells. An uncertainty range of 1% of the total 
depth is added around each project. 
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3.2.3 Contacts 

For assessing the GWC depth prognosis quality, significantly less data is present. Therefore, in this (and 

subsequent) analysis no differentiation is made between well type. The sample size can still be considered 

relatively large compared to similar studies from elsewhere. In contrast to the top reservoir depth, where 

shallow to prognosis can be considered a positive surprise as it generally results in a larger hydrocarbon 

column, a GWC that comes in shallow to prognosis would indicate a smaller than predicted hydrocarbon 

column. In figure 6 the GWC prognosis error data is plotted. Also here a similar tendency to over-optimism 

and overestimations in volume is observed. 

 

Figure 6.: GWC prognosis error (m) plot. Prognosis errors are ranked from deep to prognosis to shallow to prognosis. The 
displayed error is with regard to the mid-case prognosis. 

Combining the top reservoir depth and the GWC yields the column height. This data cannot be found in the 

EBN database directly. Figure 7 presents the column height prognosis errors. For this figure wells with both 

prognosed and actual top reservoir depth and GWC are selected. By simply subtracting the top reservoir depth 

from the GWC depth, the prognosed and actual column heights are determined. Clearly a tendency towards 

over-optimism and potential overestimation of volumes observed in the top reservoir depth and GWC depth 

results, translates to the column height optimism. Based on this parameter 76% of the 135 projects do result 

in an overestimation of volumes. 
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Figure 7.: Column height prognosis error (m) plot. Prognosis errors are ranked from smaller than prognosis to larger 
than prognosis. The displayed error is with regard to the mid-case prognosis. 

3.2.4 Rock properties, pressures and GRV  

Figure 8 displays the results of the other tested volumetric parameters. The porosity data indicates an 

(modest) tendency towards overestimating. Porosity (PHIE) is given in Porosity Units (PU) with 1 PU implying   

1% of the rock volume being porosity. High porous rocks can contain more hydrocarbons, hence 

overestimating porosity means overestimating volumes. With 0.3 on 14 PU (i.e. a relative bias of 2%). The 

porosity bias is modest and appears, considering the CI. of 0.4 PU, statistically not significant.  

In case the actual Sw is larger than the prognosed value, the impact on hydrocarbon volumes is negative. The 

Sw error graph is clearly lob sided to the left, indicating a tendency to overestimation. The absolute 10% Sw 

bias translates for a 21% relative Sw bias (i.e. with respect to the actual measured value). (Do note the reversed 

y-axis for consistency with respect to the impact on volumes). 

GRV and NRV directly translate to reservoir size so a larger number means larger volumes. Both show the same 

pattern of over-optimism (fig 8.C., 8.D.). A strong tendency to parameter overestimation with 68% of the wells 

overestimated with respect to the mid-case prognosis for GRV and 65% for NRV. The statics for both errors 

show comparable values for the bias, STD and CI.   

Alternatively, the N/G errors appear to be bias free (fig. 8.E.). Over and under-prediction balance each other 

quite well. Although the bias would indicate a minor tendency to overestimation, the amount is not significant 

given the CI. 

Reservoir pressure is also a parameter in the static models being used for volume prediction. A higher pressure 

is favourable as it results, via the gas expansion factor, in larger recoverable volumes. In this pressure dataset, 

the relative bias is small (~3%). Fig 8.F. shows a lob sided graph and it illustrates the fraction of the wells (58%) 

which overestimated the gas pressure. Table 1 summarizes the relative percentages of overprediction for all 

tested parameters.  
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Figure 8.: Prognosis error plots for 

other subsurface parameters 

assessed. A.) PHIE (pu), B.) Sw (%), 

C.) GRV (m), D.) Net (m), E.) N/G, F.) 

pressure (bar). Prognosis errors are 

ranked from lower than prognosis to 

higher than prognosis. The error 

magnitude is with regard to the mid-

case prognosis. 
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Table 1.: The factor of overprediction in percentages for all tested volumetric parameters. The percentage of 
overprediction is calculated by dividing the bias by the mean actual. Since top reservoir depth and GWC have such large 

values for their mean actuals (~3000 m), their respective overprediction percentages are quite small. 

Parameter Overprediction 

Top reservoir depth <1% 

GWC <1% 

Column height 31% 

Sw 21% 

Phie 2% 

GRV 18% 

NRV 26% 

N/G 2% 

Press 4% 

 

3.2.5. t-test 

As aforementioned the look-back study is supported further by the use of a paired t-test. The results of this t-

test are summarized in table 2. The null hypothesis of the test is that no systematic differences are present 

between the actual and the prognosis with a set significance level of 0.05 (i.e. 95% confidence). The null 

hypothesis is rejected for a parameter when the absolute value of the t-statistic is larger than the t-critical 

value, and when the p-value is larger than 0.05. Column height is not included as a tested parameter since this 

was not data directly extracted from the BRB, but rather derived from top reservoir depth and GWC. 

Furthermore, noteworthy is that all t-critical values are approximately the same value. This is because the t-

critical is a constant based on confidence level and sample size. The t-critical is always in the range of 1.965 to 

1.984 for samples sizes between 100 and 500 with a confidence level of 95%. 

Table 2.: Two-tailed paired t-test results. Null hypothesis is no difference between prognosis and actual with significance 
level (alpha) of 0.05. 

  RV Top 
reservoir 

depth 

GWC PHIE Sw NRV GRV N/G Pressure 

Samples 215 321 137 202 153 135 157 143 176 
t Stat 6.26 -3.46 3.81 1.23 -5.38 4.23 5.05 2.13 3.22 

P-value 2.01E-9 6.02E-4 2.09E-4 0.221 2.74E-7 4.25E-5 1.19E-6 0.0345 0.00151 
t Crit. 1.97 1.97 1.98 1.97 1.98 1.98 1.98 1.98 1.97 

 

Except Phie, all parameters fail the t-test meaning that the null-hypothesis of no difference between the 

population of prognosed values and actual values is rejected. There is thus a large enough difference between 

the two populations that it cannot be attributed to statistical noise/randomness. As evident from the table 

the PHIE data do not reject the null hypothesis and thus a potential bias is probably absent. This is in line with 

the statistical analysis using CI. presented above. The minor difference between the prognosis and the actual 

might therefore be attributed to statistical randomness/noise. Do note that this t-test is based on a 5% 
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significance level (which is standard in the industry), a lower significance level most likely would put more 

weight on the small difference between prognosed values and actuals and thereby perhaps have a different 

outcome of the t-test. The N/G does just pass the t-test. Although its p-value is smaller than 0.05 and its t-

statistic is smaller than the critical t-value, when a significant difference exists between the populations the p-

value is usually orders of magnitude smaller than the significance level of 0.05 (as can be seen from the other 

tested parameters).  

3.2.6. Volume updates over project life 

Above error statistics are all based on the prognosis and the actual as measured straight after drilling. As 

reservoir parameters do get updated over project life, an assessment of the magnitude of these updates is 

interesting too. Figure 9 presents the volume updates over project life. For the timespan 2009 to 2018, 321 

projects are selected with complete GIIP values. GIIP is chosen to filter out technical factors and to focus solely 

on the total gas volume present. The total size of this portfolio selection fluctuates between approximately 

4445 and 4525 BCM whiƭŜ ƴƻ ƴŜǿ ǇǊƻƧŜŎǘǎ ŀǊŜ ŀŘŘŜŘ ƻǊ ǊŜƳƻǾŜŘΦ hƴ ŀǾŜǊŀƎŜ DLLtΩǎ ŀǊŜ ȅŜŀǊƭȅ ǳǇŘŀǘŜŘ ǿƛǘƘ 

between -т ŀƴŘ п҈Φ hǾŜǊ ǘƘŜ ǿƘƻƭŜ ǘƛƳŜŦǊŀƳŜ ƛƴŘƛǾƛŘǳŀƭ ǇǊƻƧŜŎǘ DLLtΩǎ ŀǊŜ ƻƴ ŀǾŜǊŀƎŜ ǳǇŘŀǘŜŘ ǿƛǘƘ -3% from 

the first post-drill actual.  

 

Figure 9.: Volume updates over project life plot. The blue area represents the total size of the selected dataset in BCM 
GIIP. The orange line displays the average project GIIP update (%). Over time, the size of the portfolio fluctuates 

although no projects are added or removed. This is due to volumetric updates of individual projects in the portfolio. 

3.2.7. Prediction accuracy over time 

An interesting question is whether prediction accuracy has improved over time given advances in technology. 

Figure 10 and 11 show respectively the RV and the top reservoir depth prognosis errors sorted per year. Using 

a moving average, overall trends in prediction errors are assessed. Based on the size of the datasets for the 

RV a moving average window of 50 wells was chosen and for the top reservoir depth a moving average window 

of 100 wells. Although both curves fluctuate a lot due to large spread in prognosis errors, over the time interval 

selected in this study, RV prediction as well as depth prediction appear to have improved slightly.  



25 
 

 

 

Figure 10.: Recoverable volume prognosis error (m) plot ranked per year with a moving average. The moving average 
window is 50 wells. 

 

Figure 11.: Top reservoir depth prognosis error (m) plot ranked per year with a cumulative moving average. The moving 
average window is 100 wells. 














































