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Abstract

The E&P industry is frequently characterizedilsappointing project outcomes. Specifically, the industry fails
to deliver what is promised in term of hydrocarbon volumes due to overly optimistic predic{idRD
Resource Report, 2018)lthough thisprediction biasproblem is welknown amongst specialists involved,
literature is scarceTwosuggested causes of the prediction bias are evaluation tool bias (e.g. imprecise seismic
interpretation) and cognitive bias (e.g. individual motivational bibksaddition,Hoez (2016)proposed the

idea of a Selection Bias (SB) in the E&P induSByis based on the idea that more attractive prospects are
assumed to be more matured; when these overly optimistic projects are drilled, they therefore result in
disappointing volura delivery.In the Netherlandsthe stateowned company EBN participates in virtually all
E&P projects and has been reporting disappointing volumes for Ye&N Focus, 2019)his study aims to
address this problem by identifying and quantifying key pegters that contribute to the volume prediction
bias.

First using EBN dataféhe Dutch subsurface statistical lookback analysis is performed to check the quality

of subsurface parameters used for volumetric assessments. Past volumetric perforsmiamatiated for both
exploration and development wells in the time frame of 2€8B19 (215 cases). This is then broken down in
relevant subsurface parameters. Using statistical tools, the prediction bias for recoverable volume, top
reservoir depth, GWC, PH Sw, GRWRYVY N/G and pressure is quantified. Significant prognosis errors on
single well scale are observed as well as a significant bias on portfolioRedlietion errorsoften indicate
over-optimism. GRV and Sw are found to be major contributotthie observed volumetric bias.

Secondly, the effects of prediction bias are modelled on portfolio scale using synthetic portfolio modelling. A
stochastically generated synthetic drilling portfolio is designed. Prospects are ranked based on attrastivene
and drilled on paper. As the industry works with incomplete/noisy data the perception of a prospect often
differs from reality. Hence for each prospect a prognosis is synthesized using Monte Carlo simulation. When
the synthetic portfolio is drilled ongaper the prediction quality is assessed by comparing the generated
prognosis and its actual. Findings are that prediction bias can be modelled on portfolio scale based on the
concept of SB. A volume bias is unavoidable due to SB as the ranking processlargé prospects (being

truly large or perceivedslarge). Matured portfolios in which prospediesare more clusteredmight lead

to increased SB. SB is a function of evaluation uncertainty though, so rigorous technical work might reduce SB.

Themain outcome of this study is thaté lookback analysis of the EBN portfasieowsa volume bias of 42%.
This can partly be explained BB but other factors contribute. The findings of this study can help prioritize
which parameters need more carefultention in reviewing project proposals. Furthermore, including the
effect of EB in resource prediction tools might help to improve prognosis quality.

Keywords:E&P industry; prediction bias; Selection Bias; statisticatb@ak analysis, synthetmortfolio
modelling
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1 . Introduction

1.1 Problem statement

A olid understanding of the subsurface is of critical importance for successfully drilling wells. This applies
especially to the oil and gas industry, where projects are of high complexity and large budgets are at stake.
Projects in the Exploration and Prattion (E&P) industry are however frequently characterized by large
degreesf uncertainty. This is related to incomplete data from the subsurface and challenging decision making
which is based on a combination of hard data, soft data and interpretatidns.ufcertainty often results in
project outcomesfalling short of predrilling promises in term of resource volumeadany studies show
systematic underperformance of the E&P indusfeyg. Milkov, 2017; Rudolph & Goulding, 2017; NPD
Resource Report, 2018 pecifically, they report a failure of the industry to deliver promised volumes and
value. This underperformance igoven to bedirectly related to ovdy optimistic evaluations of prospects

The prediction bias is a problem that is well known amongstglists involved. Despite this awareness and
despite remarkable technological advances in computing software and seismic technology, there are few signs
of improvement over the last 30+ yegiidPDResource Repqr2018)

For the Netherlands, the Dutch statevned energy company EBN has been reporting disappointing volume
outcomes for yeardEBN Focus, 2019BN participates as a noperating partner inessentiallyall E&P
projects in the Netherlands. With its extensiveokvledge about drilling operations in the Netherlan&8N is

in a good position to assess the industries performance. Their 2019 annual report shows that over the past
decade expectednnual totalvolumes are consistently higher than the actual realizadso Overallfor the

period of 2008 until 2018 total found hydrocarbon volumes from exploration account to only 51% of the
expected volume¢EBNFocus 2019) Internationally, a similar trend is observed. The recoverable resource
volumes are reported todgenerally 24 times less than predicte@uirk et al., 2018; and references therein)

Although the overprediction problem is wédhown amongst specialists involved, dearconsensus on the
causeexists. Surprisingly little work compiling exploratiamdgoroduction performance has been published
and studies assessing possible explanations for the predictioinbiatumesare scarce. This is not surprising

for the oil and gas industry is a highly competitive market with not only substantial amountsnaly at stake

but also a strongeputationalaspect. Most projects within the industry are therefore confidential and most
companies are reluctant to share data, thereby limiting the possibility to perform reliable assessments of the
industries performane.

Recently, at the 2018 annuBliropean Association of Geoscientists & Engineers (EEaA@E)ntion 65 people

met for a workshop to discuss the prediction bias. Suggested causes for the disappointing results are, amongst
other things, problems with inpstto probabilistic models, general oveptimism, unrealistidNet/ Gross
estimates and uncertainties in trap geometry and other-rajated issueqQuirk et al., 2018)Another
possible mechanism is the phenomenon of Selection Bias (SB) as formulatedtby2dt©6) Here is stated

that as targets are selected with great care, they are also subject to large uncertainty. As the selection process
favourslarge structures (or large resource volumes) those models that show large structures do have a greater
likelihood ofbeing matured as project. This evolves in a tendency of realizing (or drilling) overly optimistic
projects which, statistically, result in disappointing project outcomes. Alternatively, if the selection criteria are
ignored and drilling the exploration pibolio would take place randomly, no bias would show up.



In the current time of climate change and the energy transition that follows from it, where society has
increasingly less confidence in the oil and gas industry, and with the prevailing unseaigelitcal
environment, it is critical for the oil and gas industry to be able to deliver what is promised. Moreover, a lot of
money is at stake and unfounded policy making based on biased data needs to be avoided. Furthermore,
certain new energy systems,g. Geothermaland CCS, do also rely on subsurface estimaiad thusa
prediction bias could be presemiso for these systemddence a better understanding of the factors that
impact prediction uncertainty and prediction bias are relevant beyond tasse petroleum industry.

1.2 Objectives and research questions

The following research questions aim to addressahevementionedproblem:
What are the key parameters that contribute to the observed prediction bias in volumes?

1 What is the quality of theprediction of the subsurface parameters being used for volumetric
assessments? (E&P drilling projects)
9 Can prediction bias effects on portfolio schkemodelle®

1.3 Research approach

To answer the research questions, the research is comprised of two camf®(il) astatistical lookback

analysis to quantify and decompose predictimas and(2) modelling the effect of prediction bias on portfolio

scale. The statistical loddack analysisbased on EBN data arsfocused on hydrocarbon reservoir volumes

and underlying parameters that are used in making volume predictions. As EBN is asfateeiwned
company only data concerning the Dutch subsurfaceavailable andire used. The first step of this analysis

is the design of a database for the pitall vs postdrill hydrocarbon volume estimate®ext, to decompose

the prediction bias in volmes, similar databasesre designed for parameters used in volumetric estimates.

For one of these parameters, hamely top reservoir depth, a database already exists. This database, set up by
Hoetz (2016) is expanded. If the statistics do allow, further biaowns are carried out e.g. prediction
accuracy per operator.

Whenthe bias is adequately decomposed using statistical anathsi®ffect of prediction bias is modelled on
portfolio scale A stochastically generated synthetic drilling portfolio is geed. After specifying the portfolio
ranking criteria, the synthetic portfolio is drillexh paper By comparing the portfolio prognosed values and
the actuals, the prediction quality is assessed. Based on this, key paramatétibuting to prediction bas
can beidentified.

1.4 Thesis outline

In this thesis first a literature study presented to better understand the volume prediction bias as presented

in literature and to summarize some of the suggested causes. As the research consists of two main
compaents, the statistical lookack analysis and the synthetic portfolio modelling, this thesis is set up in a
similar manner. First the statistical loddack analysis is presented with its own methods, results and
discussion sections. Next the synthetic polib modelling is introducedh acomparablestructure In the end

of this thesis, the conclusions section will summarize findings from both research components. The thesis is
finalized by giving recommendations for future studies.



2 « Background

To put the results of this study in perspectivecomprehensiveoverview of the prediction bias and its
suggested causes as presented in relevant literature is necessary. In this chapter, first an overview of previous
pre-drill vs postdrill assessments are presented. Then, some suggested caaenight contribute o the
observed prediction bias are summarized.

2.1 Volumetric prediction bias in literature

A comparison should be made with other datasetslater on put the results of the statistical loddack
analysis in perspective. Preferentially one of the North 8deeep the comparison as solid as possible, with
similar lithostratigraphy and geological history of the basin, and of roughly same time fracensider
technical advances that are made over time. This is where it becomes visible that little datis topth is
publicly available. Although not extensively searched for, no studies based on data outside the North Sea could
be found. For the North Sea the most extensive studies are produced by the Norwegian Petroleum Directorate
(NPD). This is the Norwieag government agency responsible for the regulation of the Norwegian petroleum
resources on the Norwegian Continental Shelf (NCS). Their 2018 annual skt a study on all
hydrocarbon targetgrilled on the NCS in the period 2092016 (fig. 1). Carerning gas targets, roughly 47
percent of findsare within, 16 percent above and 37 percent below the uncertainty ranferedicted
estimates The companies, according to this study, overestimate resource expectations by an average factor
of 2.1(NPD, 2018)
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Figurel.: Company pralrilling estimates for gas, compared with pabtlling discovery siz&igure is taken from the
NDP Resource Report 20T8¢ red area shows the RPQO0 range. The squares are the expected discovery size pre
drilling, while the triangles represent the estimated discovery sizedrilng. (NPD, 2018)

No comparable study for the British part of the North Sea has been fiouh@ public domain. The only study
that is of ®me interest is an extensive post walhalysis of the Oil and Gas Authority (OGA) on wells in the
Moray Firth area. The focus of this study is whether projects were successful and if not, what the reason fo
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failure is(OGA, 2015; Mathieu, 2016)wo other relevant datasets that address the quality of prognosis are
Milkov (2017)and Rudolph & Gouldin@017)

Milkov (2017)presents the results of a dataset comprising of 25 exploration wells drilled by Lundin Petroleum

on the NCS during the period 204 2015. Milkov shows that Lundin explorers consistently underestimate the
geological Probability of Success (PoS) and sighif y 1 f @ 2 @FSNBAGAYIGS (GKS adz0
average discovery is approximately 4 times smaller than the average estimated prospect. On portfolio scale
just over half of what was promised (Expectation Volumes) was actually found. Milkov mstkeagacase

about neglect of base rate informatioalated toexploration success and discovery sizes by explorers in their
exploration areasBase rate information meaning historical data on which constraints forpredictionscan

be based.In principlethis aspect of systematic overpromise could be forestalled by EBN for the Dutch
situation. As EBN has access to all data and as an investor evaluates all new made predictions, EBN should be
able to estimate prognosis corrections if base rate informatiahaates to.

Rudolph and Goulding2017)LINS &Sy G GKS NBadzZ 4 2F |y lylfeara :
predictions versus results in 44 countries from 1994 to 2015. Interestingly, Rudolph and Goulding on first sight
appear to be the only ones#bked on the literature used for this study) reporting an underprediction instead

of overprediction of volumes. They report that the sum of the-gridl volume is 27% lower than the pediill

volume. Thoughcloser examination shows that this concerns edkpredrill volumes. When umisked pre

drill mean volumes for the successful wells are analysed, thealgilterolumes are actually 4% greater than

the actual posdrill sum. Although still a relatively small bias, this ldo&ck study also shows an
overmprediction of predrill volumes on portfolio scald-urthermore Brown et al(2000)report that in the

period 1987¢ 1996, Exxon Mobil discoversbridwide only half the totalpredictedvolume of hydrocarbons

Many older studies also confirm that exploreesse commonly overoptimistic in their predictions of
hydrocarbon volumesge.g. Rose 1987; Johns et al., 1998; Harper, 2@@)hese studies are based on data
significantly older than presented in this study, no further attention will be given to theal/ses They do

show that apparently publicly available leblck studies might use to be more common and that probably
the industry appears to have become less willing to give insight in this type of business performance data.
Without a doubt further ingiht would presenitselfif larger statistical loolback studies would be available.
Forexamplejn 2000 a book was published by Ofstad et al. combining the papers presented at the Norwegian
Petroleum Society conferendmproving the Exploration Processltearning from the Pakeld in Haugesund

in September 19980fstad et al., 2000)This book touches various aspects of the exploration process with the
aimof further developing and improving the process for the future.

Summarizing, few recent studieseaavailable assessing the prediction bias in hydrocarbon volumes, let alone
on the underlying parameters. Yet the problem is well known amongst insiders. Although no clear consensus
exists on the cause of the bias, some possible contributors are suggestethe next section, in
correspondence with Hoetz et a02020, in review)these proposed ideas are divided in the following
categoriesevaluation tool induced biaandcognitive bias

2.2 Evaluation tool induced bias

Ly SELX 2Nl GA2yY & 6AGK it 3I3S2f23A0Ft &dzo&adzNFI OS
are built to reproduce reality as accurate as possiblegese models are mainly based on seismic data and
surrounding wells. They represent exterpretation based on seismic interpretation and assumptiohshat

is likely to occur between datapoinfkelliot et al., 2009)Often soft and hard data are not enough to define

the distribution of parameters in the reservoir model. Hence stochadtjordhms are used to provide a
measure of uncertainty based on petrophysical parameters and lithofacies. As the uncertainties of each input
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data used to build the static reservoir modehnnot be expressed in a deterministic realization, a probabilistic
model is often the outcoméRose, 2008Binns & Corbett, 20)2

As mentioned, the static probabilistic reservoir models, on which the prediction of volumes is based, depend
significantly o interpretation of seismic and well®Whereas estimates for e.g. pusity (PHIE), are often
straightforward andbased orwell data, parametersuch as Gross Rock Volume (GRV) and column height are
more complex and very specific for each individual prospect. These parameters depend largelgnoin
interpretation and carhave large uncertainties. Seismic imaging is an imprecise tool even if imaging appears
good. An interesting example is given by Quirk and Ruthf20f)8):because of the relatively low vertical
resolution in seismic (usually>25m) we often assume thatbiee of the overlaying seal does equal the top

of the reservoirHowever this is not always the case and some waste zone is present. This approach tends to
result in overestimating volumes.

Another issue with founding volume predictions on these praligtic models is the choice of distributians
Quirk and Ruthrauféhow in their 2006 paper that three different volumes can be predicted using identical
P90 and P10 values in GRV, Net/Gross (N/G) and hydrocarbon column height. Just by doing nothing other than
changing from lognormal to stretched beta distributions. @iy, this affects prediction accuracy. A lot of
other issues with the method of predicting hydrocarbeolumesare also presented. Such as that static
models do not take into account the threimensional aspect of reservoir propertié€@uirk & Ruthrauff
2008; Binns & Corbett, 201283nother example of bias being introduced by the evaluation method is known
from seismic timedepth conversior{Hoetz, 2016)In case the velocity model is too simplistic an important
effect might be overlooked: rock velo@t tend to increase with increasing depth. A more elaborate velocity
parametrization is required to take this into account.Uf&?2 illustrates how ignoring this effect can result in
systematic overpredicting volumeSo, the conclusion is that predicti@mrors and prediction bias can be
introducedsimplyby the methodology or evaluation tool by which volumes are prognosed.

W1 W2 W1 W2

Figure2.: Example o&valuation tool induced biagsulting in oveoptimistic volume predictionsom Hoetz(personal
correspondencekEarly seismic data was often not properly depth converted, e.g. because the velocity model used was

too simplistic and ignored the effect of burial compaction. In thésvgple a development well (W2) was planned on a

gas bearinganticline that was discovered earlier by W1: drilled at the crest of the strudilaepingand time-depth
conversion of the entire accumulation used a constant velocity calibrated d@tigMeft). Subsequently W2 was drilled

and found the flank deeper than prognosed. Advances in velocity model building (introducing more sophisti&ated VO
velocity functions that honor the effects of burial compaction) shows that the anticline is narrower tipgednaitially

(fig. right).

In this category we are however limited by the technology being deployed. We can pursue that the tools that
we have at our disposal, are used correctly. We should avoid treating the tools as black boxes and recognize
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potential errors as soon as possible. To do so, we should be aware of improper use of evaluation tools. An
example would be to create awareness of proper tidepth conversion methodology.

2.3 Cognitive bias

Given the degree of subjectivity of volume predictions, the influence of cognitive bias is an important
consideration. The general definition of a cognitive bias is a predictable and repeatable, unconscious mental
error in the processing of information, wdh can result in illogical judgement and decisi(Baddeley et al.,

2004) Causes of bhias, specifically on decision making, have been described in general by Kahneman in this
bestselling bookThinking, Fast and Slow (201Cpgnitive biases in particuls Earth Sciences are addressed

by Baddeley et a(2004) As the sources and implications of cognitive bias in the exploration process are very
widespread(Baecher, 1988; Baddeley et al., 2004; Binns & Corbett, 201&)uld be beyond the scope of

this thesis to try and list themlalnstead attention will be focused on three forms of cognitive bias that are
perceived to have the largest impact on prediction quality. Namely overconfidence, individual motivational
bias and base rate negle@addeley gal., 2004; Binns & Corbett, 2012; Milkov, 2017)

2.3.1.0verconfidence

Overconfidenceisawel a G 6t AAKSR 0AladA Ay G6KAOK 2ySQa &adzwaSoi
the objective accuracy of the judgemeitahnemarn(2011)describes a disction between a swift, intuitive
response to a situation and a more thoughtful, analytical approach. This is argued by Binns and(2aiBtt

to be particularly applicable to the E&P industry. Rapid, intuitive response to a project proposal based on
experience instead of a more slow but considerate response will surely affect prediction performance.
According to Myerg2018) the potential effects of overconfidence can easily be counteracted by the
appropriate use of historical data.

2.3.2.Individual motivational bias

In a sense exploration geoscientist have conflicting roles when generating and reviewing prospects. On one
hand, they must accurately evaluate available information and make a prediction as close to reality as possible.
Alternaively, they are expected to be creative in generating opportunities and be persuasive in maturing
them. This might influence the quality of the predictions. In general terms it is hard to judge which motivational
factors might affect prediction quality.des, for example, the possibility of not getting a prospect drilled
impact the assessment of prospect si@@ond and Carragher, 20I8Motivational bias can be under
unconscious control but might be conscious t¢Baddeley et al., 2004)

2.3.3.Base rateneglect

Historical base rate information can help set constraints on future predictions. However, people tend to rather
focus on specific information at the expense of historic base rate informéilahneman and Tversky, 1973;
Baddeley et al., 2004Yhis shortcming in sufficiently weighting-priory information in reasoning is known

as base rate neglect. An example is demonstrated by M{&o¥7) Milkov shows that, based on a dataset of

25 exploration wells from Lundin Petroleum, Lundin explorers disregasthiiation about recent discoveries

and insteadbase volume assessments on individual prospect information. This ultimately contributes to a
volume bias.

In the examples of cognitive bias above, the role of the explorationist is described as one of auahdivi
However, in reality the exploration process is based on group workawexperts collaborate and confer in
teams. This generates other, more complex forms of bias associated with group interdBaaiueley et al.,
2004) Also, the mix of biasesd to what extend they influence the prediction process varies per company
and per individual. Quirk and Ruthrauf2008) state for example:d h dzZNJ SELISNA Sy OS A a
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assessments of the same il prospect made by different interpreters anddifferent companies commonly

@ NBE o0& Y2NB { KQuahtfiing the efettdbMNbgBitive biag ¢h prédiction performance might
therefore be a tough, if not impossible, task. We are not aware of studies assessing the amount of cognitive
biases bing present in predictions from geoscientists. It might be an area of fruitful and useful future research.
Until then the effect of cognitive bias should be restrained as much as possible by consistency in the prediction
process. Foexample,via the use b historical data(Myers, 2018)r workflows (Milkov, 2015) After all,
subjective judgements are not necessarily problematic as long as they are derived in a consistent manner and
can thus be accounted fqiCox, 1946)Another useful advice for mitigatingpgnitive bias is introducing
thorough technical project challenge (e.g. peer reviews) by others who have different motivations.
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3 « Statistical lookback analysis

Toquantifythe volume bias and to pinpoint key parameters that contribute to it, a statisticattbeak study
based on historic data is performed. In this study the quality of the prediction of the subsurface parameters
being used in volumetric assessmentaiglysed This chapter firstdescribeshe method of the statistical
analysisSubsequentlyhe results of tlisresearch arg@resentedand discussed.

3.1 Methodology

The statistical loolback analysis is based on EBN data. As stated in the introduction, EBRfipatasi as a
non-operating partner in virtually all E&P projects in the Netherlands and therefore has access to all data
regarding the projects. The pwrill prognosed values of reservoir characteristics are generally supplied by the
operator as part oftie proposal for the project. Once executed, the pdstl measurements (actuals) are also
provided. Of the various parameters, the reservoir depth prognosis can easily be checked from the well logs.
PHIE, water saturation (Sw), GWC and N/G require soufi@thl petrophysical analysis but can also be fairly

well constrained after inspection of the well log. Gas Initially In Place (GIIP) and Recoverable Volumes (RV) are
estimates based on well tests and/or updated static models. Analysing predictionyqufedipecific reservoir
parameters allows tinvestigate whictstatic model input parameters are dominating the observed prediction

bias ingas volumesAll the supplied data is stored by EBN in their proprietvell database Basis Registratie
Boringen (BRB). To ensure full auditability, all compiled datasets used in the study are based on data from the
BRB. Parameters assessed in this study are RV (recoverable volume), GIIP, top reservoir depth, GWC, PHIE, Sy
Net rock volume NRY, RV, N/G and pressure. Note that all these parameters are separate entdesa(

fields) in the BRB. For example, Nd@ta used in this studis not derived fromNRVand RV data from the
database. Rather N/G data is stored separately in thed®Balues are directlyaken from the BRB. Results
presentedin this chapter are based on a download of the BRB frofd238020.

As data being used evaluations is typically incomplete and imperfect, it is likely that a prediction is estimated
higher or lower compared to thé (i NJdéritiere is little point in assessing individual predictions on their
guality. On portfolio scale though, the cumulative predictions should approach the measured actual. A
statistical approach looking at a significantly large set of wellseiefore taken to assess prediction quality
and the overall portfolio performance. The focus of this study lays therefore on acquiring results with as much
statisticalrelevance as possible via large sample sizes. Most results that are shown in thisrepberefore

based on a dataset compiled of both exploration and development wells. Furthermore, datapoints are only
from drilling projects with a hydrocarbon objective from the period 2004 until 2019. Datapoints from before
2004 are excluded due toaompletenessAlso, technical failures are removed from the compiled datasets
whilst dry holes(regular outcomes of exploration wells) are kept in as data entries. The reason for that is as
follows: in the case of a technical failure the prognosis coul@, t circumstances not be checked with a
reliable actual measurement. Hence this datapoint is considered inconclusive. In thef cagédoleson the

other hand, both prognosis and actual are available and hence constitute valid datapoints.

Where requied, further details regarding the various datasets are given in the results section where they are
presented. When sample sitaka the number of samples in a data slgs allow, further irdepth analyses

are performed. For example, top reservoir depidsha large sample (>300), so further detailed analysis such
as bias per operator are possibldowever, hese detailed analyses are not documented in thissisfor
confidentiality reasonsAs all operators deliver data in a different manner and with aeckfit format, some
wells/data entries in the EBN database have more information than others. This reflects in various sample
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sizes of the different datasets used for the statistical analysis. The fact of the matter is that within the EBN
database some enigs have complete prdrill and postdrill data on volumes and all underlying parameters,
while others only have incomplete data (e.g. no prognosed porosity).

Data entries in the various datasets are checked by using the source documents e.g. welllproppsat

drilling well summariesin particular outliersi.e. very large prognosis errgisave been qualitcontrolled
Also,some random checks, around 10% of the datasetre conducted to get a feel for the accuracy of the

EBN databases. These ssudocuments can be found in the EBN onhnehiveas well as the online NLOG
database. NLOG is a database managed by the Geological Survey of the Netherlands and contains all
subsurface data that is made publicly available under Dutch mining legisMtiererelevant dataoutliers

and data discrepancies were reported and the EBN databasethendataset used in this researciwas

updated.

lff RIFEGFaASGA FNB O2YLIAE SR Ay aAi QGiNBdsZofsiatistedt h&yisis. I Y R
For each parameter the error is calculated by subtracting the actual from the prognosis for each well. The
mean of the prediction errors is a measure for the prediction bias for that particular parameter. To quantify
the spread of prdiction errors the standard deviatio®STD is determined. A relative bias (bi#s is calculated

by dividing the bias by the mean of thetual In addition, as the used datasets only represent a subset of the
total population (as stated: the EBN databas@ot complete) a confidence interval (Cl.) is calculated. In this
way it is possible to determine whether an observed bias is statistically significant. Example: from the period
beingreviewed 2004¢ 2019), 643 data entries (wells) are present in tiBNEdatabase and these represent
virtually all hydrocarbon wells drilled in the Netherlands for that period. Of these, only 328 have complete
pre-drill and postdrill top reservoir depth data. As the sample of data is thus just over half of the entire
population present, a Cl. is necessary to estimate within which range bias parameters are for the full
population. Several statistical tools were tested for estimating Cl values: Tibco SporandExcel. the

latter was found to be most practical and lemnused in the further analyses. These duplicate test analyses are
not included in this report.

To further substantiatehe statistical analysis, paireedésts are performed on the datasets after Heggland et

al. (2000) Heggland et al. have conductedsimilar study in which they compared pedtll hydrocarbon
volumes and volumetric parameters witheir respectivepre-drill predictions. This research was based on
data from the NCS. Atést is a statistical tool used to determine if there is a sigaift difference between

the means of two datasets. As there is always the factor of statistical random noise, small differences between
prognosed values and their actual measurements can occur without a bias in the ability to prognose. The t
test basicallyaccounts for this statistical noise and checks whether any potential differences between a
prognosis and actual can be attributedldy to the noise, or that other factors are involvells prognosiand

actual are inherently related, a paireddst is sed. This type of correlatedtést applies to datasets of
matched pairs of similar units. As the actual measurement can come in either higher or lowerdigansis,

a so calledwo tailed paired ttest is performed on all datasets. The null hypothesidlie tests is that there

would be no difference between the prognosis and the actuals other than random noise. This is following
Heggland et al. and is also the custom null hypothesis used in statistical studithermore, he t-tests were
executed wih a significance level (alpha) of 0.05. Meaning that a risk of 5% was taken in concluding that a
difference exists when there is no actual difference between the two populat®b% chance of incorrectly
rejecting the null hypothesis wakus deemed aceptable.The significance level of 0.05 was chosen as this is
standard in statistics.

The ttest produces two results that are of interest to determine whether to reject the null hypothesis or not:
the pvalue and the statistic. The pralue is the probhility of obtaining an effec{in this case a prognosis
error) at least as extreme as in the sample data, assuming the null hypotikesisrect When a pvalue is
thus less than or equal to the significance level, in this case 0.05, you can rejectlthgpmthesis. In most
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cases though, the-palue will be orders of magnitude smaller than the alpha value when a bias is present. In
addition to this test of the null hypothesis, thetdst produces a-statistic. The {statistic is a ratio of the
differences between twadatasets The larger the-gtatistic, the more difference there is betweatatasets

and vice versa. For example,-gatistic of 3 means that thelatasetsare three times as different from each
other. Tle t-statisticcan be compared with theritical value, the value that ascore must exceed for the

null hypothesis to be rejected. As a tailed t-test is taken, the absolute value of thestatistic istaken.

Lastly, the EBN database that is used contains more information than justiprand postdrill parameters.
Specificallythe postdrill values are the first, often prtminary, measurements after the well has been drilled.
Often these valuesra updated over the project duration as more measurements are done over time. We can
reasonably assume that new measurements are a closer approximation to reality. To indicate how close the
first measurements used in this study are to further updates dng thow stable the calculated bias is with
respect to later updates of the actuals. Hence an additional analysis is performed assessing the frequency and
magnitude of volumetric updates. Before, during and after the drilling project there is regular caoation
between the operator and EBN. In spring and fall Technical Committee Meetings (TCM) and Operating
Committee Meetings (OCM) are organized. In these meetings the activities of the paatgeéscussed and
evaluatedby the operatorsEBN is inform@ about any updated measurements and these updates are then
stored in the national hydrocarbon resource database IPResource (IPRes). This database has the purpose of
monitoring and prognosing production rates and volumes. To assess the frequency andudiagofit
volumetric updates, information from this database is used to calculate the percentual change of volumes per
year. Projects with complete GIIP data over the timespan 20@918 are selected. Updates where the
volumes were adjusted with more than Q% percent are regarded outliers, for example due to erroneous
measurements, and are not taken into account.

3.2 Results
3.2.1. Volumes

Figure3 shows the predrill RecoverableVolume (RV)and its actual for each project in the compiled RV
dataset. Recoverald Volume (RV) = Expectation Volume (EXP = Means Success Volume * Probability of
Success) * Recovery Factor (RPily wells targeting gas have been selected to avoid unnecessary and
complicated volume conversions. Also, the major part of the Dutch E&Bagtsdjarget gas, whilst only 13
wellsin the datasetargeted oil. Of the 215 gas wells, 96 wells have a RV result below theakmvestimate.

This category includes 54 dnples. Another 53 wells have an actual RV between theaasé and the low
case.34 wells delivered on prognosis. (note that often no new RV values are being calculated when
measurement do not differ much from prognosi8® wells delivered better than the basmse.This means

69% of the wells in this dataset fell short of delivering the-odde expectationolume.For this dataset only

58% of the prognosed (risked) volumes are found. This implies a 42% volume prediction bias.
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Pre-drill recoverable volume estimates compared with post-drill actuals
plotted with low-case - high-case uncertainty range
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Figure3.: RV prediction vs actual diagram. For each drilling projecidecaserecoverablesolumeestimate is plotted
(blue rhombus) with a lowase to higkcase uncertainty range (grey bar). ¥pgheregepresent the actual volume
measirement after drilling. Dripoles are plotted at the 0.0 RV axis. Projects are sorted otasil estimate size. Note
the logarithmic scale.

3.2.2 Depth prognosis

Top reservoir depth is an important factor in determining the hydrocarbon colbgight, the position of
possible spill points and theR¥ Often, in case the actual reservoir depth as encountered in the well, turns
out deeper than prognosed, the volumes have to be adjusted downwards. Higuesents the top reservoir
depth prognoss errors. 321 Wells within the timeframe of this study are found in the EBN database that
contain the predrill prognosed top reservoir depth and the paill measured actual. For this analysis and

all the following ones, both gas target wells and ailget wells are considered, in contrast to the volume
dataset. Thisvas doneto strive for as much statistical relevance as possible. The depth errors of these wells
are plotted with the differentiation per well type: exploration, appraisal and productibme maximum
underestimation is343 meters and the maximum overprediction 225 meters. Based on visual inspection of
the graph it would appear that the largest errors are genenafgrringto exploration wells. Overall 61% of

the wells showdepth errorresulting in an overestimated volume. This biawards overoptimism is also
represented in the fact that the chart lisb sidedto the left.

The argument can easily be made that it is unrealistic to expect from geoscientists that they predict top
reservar depth (and GWC for that matter) exactly on point. Depth prognoses are based on seismic and well
data containing noise plus assumptions. Unfortunately, no information regargiedrill depth prediction
uncertainty is available in the EBN databaNevetheless,an attempt has been made to put thesiepth
errorsinto context. A rough rule of thumb says that estimating depth with a depth accuracy of up to 1%
percent is typical andeasonable(Hoetz, personal correspondencs) figure 5 the depth errors ca be
referenced with respect to 1% of the target depi#so,this figure represents a subset of the depth error
dataset. Here only exploration wells have been selected. Often for well reviews different well tyge=pare
separate in order to reduce thésk of comparing apples and oranges. In this graph significant prognosis errors
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can be observed outside the 1% uncertainty range. Furthermore, the graph is also left skeplgihg bias
to overestimating volumes in exploration wells.
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Figured.: Top reservoir depth prognosis error (m) plot. Prognosis errors are ranked from deep to prognosis to shallow to
prognosis with a distinction per well type. The displayed error is with regard to theasedprognosishe diffeence in
percentage between oveand underestimates indicates the presence of bias in the progrnibsedias-8 m) is larger

than the CI (+/5m) indicatingthat the bias is statistically significant.
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3.2.3 Contacts

For assessing the GWC depth prognosis quaignificantly less data is present. Therefore, in this (and
subsequent) analysiso differentiation is made between well type. The sample size can still be considered
relatively large compared to similar studies from elsewhere. In contrast to the top reservoir depth, where
shallow to prognosigan be considered aggitive surprise as it generalhgsultsin a larger hydrocarbon
column, a GWC that comes @hallow to prognosisvould indicate a smaller than predicted hydrocarbon
column. In figure the GWC prognosis error data is plotteds@\here asimilar tendency to oveoptimism

and overestimations in volume is observed.
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Figure6.: GWC prognosis error (m) plot. Prognosis errors are ranked from deep to prognosiote shprognosis. The
displayed error is with regard to the migse prognosis.

Combining the top reservoir depth and the GWC yields the column height. This data cannot be found in the
EBN database directly. Figurgresents the column height prognosig@s. For this figure wells with both
prognosed and actual top reservoir depth and GWC are selected. By simply subtracting the top reservoir depth
from the GWC depth, the prognosed and actual column heights are determined. Gézmiyency towards
over-optimism and potential overestimation of volumes observed in the top reservoir depth and GWC depth
results, translatsto the column height optimism. Based on this parameter 76% of the 135 projects do result
in an overestimatn ofvolumes.
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Figure7.: Column height prognosis error (m) plot. Prognosis errors are ranked from smaller than prognosis to larger
than prognosis. The displayed error is with regard to thecask prognosis.

3.2.4 Rock properties, pressures and GRV

Figue 8 displays the results of the other tested volumetric parameters. The porosity data indiaates
(modest) tendency towards overestimating. PorogRHIE is given in Porosity Units (PU) witiPU implying

1% of the rock volume being porosity. High porous rocks can contain more hydrocarbons, hence
overestimating porosity means overestimating volumes. With 0.3 oRPUW4.e. a relative bias of 2%)he
porosity bias is modestnd appears, coidering the ClI. of 0.4 PU, statistically not significant.

In case the actual Sw is larger than the prognosed value, the impdmgtdsacarborvolumes is negative. The
Sw error graphs clearly lob sided to the left, indicating a tendency to overestimafidre absolute 10% Sw
bias translates for a 21% relative Sw bias (i.e. with respect to the actual measured {xdusote the reversed
y-axis for consistency with respect to the impact on volumes).

GRV andNRWirectly translate to reservoir size séaager numbemearslarger volumes. Both shothe same
pattern of overoptimism (fig8.C, 8.D). A strong tendency to parameter overestimation weBfb of the wells
overestimated with respect to the midase prognosis for GRV and 65%N&V The statics foboth errors
show comparable values for the bi&lDand CI.

Alternatively,the N/G errors appear to be bias free (fgE). Over and undeprediction balance each other
quite well. Although the bias would indicate a minor tendency to overestimati@amount is not significant
given the CI.

Reservoir pressure is also a parameter in the static models being used for volume predittigimer pressure

is favourableas it results, via the gas expansion factotaiger recoverable volumes. In thisegsure dataset,

the relative bias is small (~3%). &ig.showsalob sided graph and it illustrates the fractiofthe wells (586)
which overestimated the gas pressur€able 1 summarizes the relative percentages of overprediction for all
tested paraméers.
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Tablel.: The factor of overprediction in percentagesall tested volumetric parametershe percentage of
overprediction is calculated by dividing the bias by the mean actual. Since top reseptoiaiie GWC have such large
values for their mean actuals (~3000 m), their respective overprediction percentages are quite small.

Parameter Overprediction
Top reservoir deptt <1%
GWC <1%
Column height 31%
Sw 21%
Phie 2%
GRV 18%
NRV 26%
N/G 2%
Press 4%

3.2.5. ttest

As aforementioned the loekack study is supported further by the use of a pairéglst. The results of this t

test are summarized in tabl2 The null hypothesis of the test is that no systematic differences are present
between the actual and the prognosis with a set significance level of 0.05 (i.e. 95% confidencalllThe
hypothesis is rejected for a parameter when the absolute value of #tattstic is larger than the-critical
value, and when the-value is larger than 09 Column height is not included as a tested parameter since this
was not data directly extracted from the BRB, but rather derived from top reservoir depth and GWC.
Furthermore, noteworthy is that alldritical values are approximately the same valuesThibecause the t
criticalis a constant based on confidence level and sample Bigetcriticalis always in the range of 1.965 to
1.984 for samples sizes between 100 and 500 with a confidence level of 95%.

Table2.: Twotailed paired ttest results. Null hypothesis is no difference between prognosis and actual with significance
level (alpha) of 0.05.

RV Top GWC PHIE Sw NRV GRV N/G Pressure

reservoir

depth
Samples 215 321 137 202 153 135 157 143 176
t Stat 6.26  -3.46 381 BB 538 423  5.05 213 322
Pvalue  2.01E9 6.02E4 2094 BB 2.74E7 42565 1.19E6 0.0345 0.00151
t Crit. 1.97 1.97 1.98 1.97 1.98 1.98  1.98 1.98 197

Except Phieall parameters fail the -test meaning that the nuthypothesis of no difference between the
population of prognosed values and actual values is rejected. There ia targe enough difference between

the two populations that it cannot be attributed to statistical noise/randomnessevident from the table

the PHIE data do not reject the null hypothesis and thus a potential bias is probably absent. This is in line with
the statistical analysis using. ftesented above. The minor difference between the prognosis and the actual
might therefore be attributed to statistical randomness/noise. Do note that thisst is based on a 5%
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significance level (which is standard in the industry), a lower significance level most likely would put more
weight on the small difference between prognosealues and actuals and thereby perhaps have a different
outcome of the ttest. The N/G does just pass théest. Although itgp-value is smaller than 0.05 and its t
statistic is smaller than the criticavlue, when a significant difference exists beem the populationshe p-

value is usually orders of magnitude smaller than the significance level of 0.05 (as can be seen from the other
tested parameters)

3.2.6.Volume updates over project life

Above error statistics are all based on the prognosis thedactual as measured straight after drilling. As
reservoir parameters do get updated over project,ld@ assessment of the magnitude of these updates is
interesting too. Figur® presents the volume updates over project life. For the timespan 200018, 321

projects are selected with complete GIIP values. GIIP is chosen to filter out technical factors and to focus solely
on the total gasvolumepresent The total size of this portfolio selection fluctuates between approximately
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Figure9.: Volume updates over project life plot. The blue area represents the total size of the selected dataset in BCM
GIIP. The orange line displays the average project GIIP upda@véb}lime, the size of the portfolio fluctuates
although no projects are added or removed. This is due to volumetric updates of individual projects in the portfolio.

3.2.7. Prediction accuracy over time

An interesting question is whether prediction accuracy has improved over time given advances ithagghno
FigurelOand 11 show respectively the RV and the top reservoir depth prognosis errors sorted per year. Using
a moving average, overall trends in prediction errors are asseB8se@d on the size of the datasets for the

RV a moving average windowitf wells was chosen and for the top reservoir depth a moving average window
of 100 wellsAlthough both curves fluctuate a lot due to large spread in prognosis erngstloe time interval
selected in this study, RV prediction as well as depth prediegipear to have improved slightly.
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Figurel0.: Recoverable volume prognosis error (m) plot ranked per year with a moving avEnageoving average
window is 50 wells.

Figurell.: Topreservoir depth prognosis error (m) plot ranked per year with a cumulative moving av&hsgeoving
average window is 100 wells.

25






































































